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A NEW LIE SERIES METHOD FOR THE NUMERICAL 
INTEGRATION OF ORDINARY DIFFERENTIAL EQUATIONS 

WITH A N  APPLICATION TO THE RESTRICTED 
PROBLEM OF THREE BOD lESi 

BY 

Siegfried Filippi 

c I l n A A  
3 urv\rvlARY 

In this paper a new method for the numerical solution of problems of in- 
itial value in ordinary differential equations, originally developed by W. GrGbner, 
will be described. The first step will be to describe the most important theorems 
of W. Grabner's Lie series with reference to the generalized Lie series of Filatov. 
Then follows a detailed explanation of the new method of Lie ser ies  illustrated by 
the restricted problem of three bodies. 
tions are made using the power series method and the Runge-Kutta- Fehlberg 
method. 
distinguishes itself by being a numerical method of any high truncation e r ror .  
simple and efficient automatic step-size control can also be realized. 

For  this a number of comparing calcula- 

This specific method of Lie series compared with W. Gr'dbner's method 
A 

I. The decisive suggestion to use the method of power ser ies  as a basis for  
the new Lie series method was made by Dr. Erwin Fehlberg of the Compu- 
tation Laboratory, George C. Marshall Space Flight Center (see also 
Fehlberg and Filippi [ 1 ] ) . The work was financially supported by means 
of the NASA Contract NAS 8-11209 to the General Electric Company. The 
numerical computations were performed on an IBM 7094, Model I1 com- 
puter at the George C. Marshall Space Flight Center. 

2. Dozent at the Technische Hochschule Aachen, Aachen, 
We st Germany. 



1. I NTRODUCT I ON 

During the last few years  the method of Lie series developed by W. Grobner 
[ 21 was often applied to the numerical solution of problems, of initial value in ordi- 
nary differential equations [ 3,4,5]. In this form the method of Lie series could 
in no way compete with other methods for the numerical solution of ordinary dif- 
ferential equations. This was mainly because of the difficulties in finding at first 
a satisfactory analytical initial approximation for the problem considered, and 
secondly because the perturbation integrals to be computed in using quadrature 
formulas required a very considerable computational effort. Furthermore the 
method of Lie series as originally developed had a relatively low order of the 
truncation error, i. e. , the highest order of the truncation e r r o r  was 0 (h') [ 41. 
And it was impossible to enlarge the order of the truncation e r r o r  by adding fur- 
ther  terms of Lie series, because the appropriate operator expressions D' zi 
for v = 4,5,. . , became much too long, and in comparison with the solution the 
effort was by far too much. The method of Lie series described in this paper 
(see also [I] ) eliminates all these difficulties. Now a solution of problems of 
initial value of any high truncation error can be realized by means of a numerical 
method; also included is an  efficient automatic step-size control. Only by this 
treatment did the new method turn out to be a very effective numerical method. 

In the first part  of the paper the most important theorems of the method 
of Lie series will partly be stated and partly proved. Then follows the new method 
as applied to the restricted problem of three bodies. And finally a number of 
comparing calculations are made with reference to the method of power series 
and the one of Runge-Kutta-Fehlberg. 

I I. G R ~ B N E R ' S  METHOD OF LIE SERIES 

A. Genera l  

In 1960 W. Gr6bner developed a new method fo r  the numerical solution of 
problems of initial value in ordinary differential equations, by using the Lie series. 
During the last  few years  GrGbner's method sometimes was applied to the numer- 
ical solution of multibody problems. 

In the first part  of our paper the most important theoretical basic theorems 
of the method of Lie series will partly be explained and partly be proved. 
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We introduce a linear differential operator 

with the holornorphic functions f (z )  of the complex variables zl, z2, . . . , zn. 

We call a function f ( z )  of these variables holornorphic at one point (e. g. , at 
z1 = z2 = . . . = z 

power series. 

k 

= 0) if it can be developed as a regular absolutely convergent 
n 

If a!! fk (z)  and f ( z )  in the neighborhood - of this point are holomorphic, 
then the operator, equation (1) , can be applied to f ( z )  

and we obtain, according to well known theorems of function theory, a function 
that is again holomorphic at the same point. By repeated use of the operator 
(1) to f ( z )  

( 3) 
k-i (k  = 0, 1, 2, . . . ) k 

D f ( z )  = D [D f ( z ) ]  

we always get a function being holomorphic at the same point. 

Using operator (1) we define a Lie series by 

f& k tD 

k = o  
D f ( z )  = e f ( z )  k !  

tD - -  where e f (z )  is a symbolic way of writing series 

In equation (4), t stands for a new complex 
variables zl, 3, . . . , z Every te rm in equation n' 
morphic function of these n + i complex variables. 

variable, independent of the 
(4) is a well-defined holo- 

If it can be shown that a number T > 0 exists so that series (4) is abso- 
lutely convergent f o r  It I < T, then we can say that series (4 )  is a holomorphic 
function of the variables zi q, . . . , zn, t. 

3 



B. Proof of Convergence 

Using Cauchy's method of majorants [ 2 ]  we are going to prove now the 
convergence of the Lie series, i. e. , we shall prove the following theorem: 

Theorem 1 

If G is the common holomorphic region of f (z )  and of all f (z)  , then at k 
every point of G there is a number T > 0 so that the Lie series 

assuming 

is absolutely convergent for  all I t I < T. 

The proof of this theorem, using the Cauchy majorant criterion, is given 
by the following three steps: 

(a) Determination of a suitable convergent majorant for  f (  z) and for  
operator D, s o  that f (  z) 4 g(  y) and I D I 5 A 

k k 
(b)  Proof that ID f (z )  1 5 A G(y) follows from (a) 

(c) Determination of a number T > 0 fo r  which there is absolute conver- 
gence for all I t I e T in series (5) 

Step a 

If P is a point within G, then the function f (  z) , assumed to be holomorphic 
in G, can be developed into a power series convergent at P. If by an appropriate 
coordinate transformation, P is moved to the origin zi = 22 = . . . = z n then the power series expansion is 

=O,  

4 



0.. 00 
ii zi . . .  z 

n 
f ( z )  = - a. 

ii .  . . i ii. . . i n 
n 

with I z. I 5 p . > 0. Power series (6)  is absolutely convergent in a certain region 
J J 

of the origin. The bounds p . are chosen so that convergence of series (6)  for  

I z. 1 1  p .  is certain. Generally, it is very difficult to state the whole domain 
J J 

of convergence of equation ( 6 ) .  But it is sufficient to find only one domain of 
convergence of equation ( 6 ) .  

J 

The convergence of 

ii. . . i n 

I a. I P i  ii "4, in 
ii. . . i n 

follows from equation (6)  . Since the te rms  in a convergent series are bounded 

I a. IPi ii -4, i n I  M 
ii. . . i n 

or 

= b. M 
ii. . . i pi4. . . p,in n 

I a. I s  
ii. . . i n 

we get as the majorant for  f ( z )  

with I z. I 5 y. < p It follows from equation ( 7 )  that J 1 j '  

(+(1-;)...(1 - +) n 



because yi / P .  < 1. 
J 

Since an absolutely convergent se r ies  within its domain of convergence 
can be rearranged arbitrarily, we arrange equation (IO) in the following way 

i, in Yi . Yn 11. . . i e ii. . . i b. n 
n 

the summation i, + i2 + . . . + in = i being extended over all possible combinations 
of indices. If we then replace y. and/or p. with y and/or p so that y = max (y.) 

and/or p = min (p.)  , we get for the function g(yi)  with n real  variables yi  

function G(y) with one real variable y. So we have 

I f  (z) I s G  (y) = 1) biyi 

J I J 

1 

00 

i = o  

It follows from 

I ( i  = 0, 1, 2, . . . )  
n 

b.? 1 'aii. . . i 
i , + . . . + i  = i  

n 

and 

that 

Y 
1- - 'j 

pi  P 

P 
I-- 

'i 
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We get 

Since an absolutely convergent series can be differentiated te rm by t e rm 
as often as desired within the domain of convergence, and the majorizing operation 
can be transferred to the derivatives, we get 

...................... 

n 
k az ?Yn 

In the same way as for  f (  z) we find a majorant for the functions f ( z )  
k 

We assume that the p .  are equal for  all estimates; this can, of course, always be 
achieved. 1 

We therefore get as majorizing operator 

Step b 

It follows from 

(17) 
D 
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Since the functions f (z )  are holomorphic, they can be expanded into a k 
power series 

W e  also develop the majorizing operator in a power series 

With f (  y) 2 I fk(  z) I ,  it follows that 

= C c j l . .  ( k) . jn  
. ( j  = O ,  1 ,  2, ...) 

j i + . . . +  j n = j  

Assuming this, it now follows that 

and 

With equations (12a) ,  (20 ) ,  and i -= i (ii + i, + .  . . + i = i ) ,  these 
k -  n relations hold: 

I .  12.1 5 y 
J 

i 
( k) a. i 19 y.b , 

ji. . . j 11. .i J i  k = l  ii+. . .+i = i j i + .  . .+ j n  = j n n 
2. p. z r I C  

n 
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i. e . ,  A G(y) is a true majorant fo r  Df( 2) because the coefficients of the series 
2.are always smaller than the corresponding coefficients of series (22). Thus 

But since Df( z) and/or A G(y) , as was shown above, fulfill the same conditions 
as f ( z )  and/or G(y) , we get 

D [ok-'f(z)] 5 A[Ak-'G(y)] 

Since the sum of the majorants is majorant for the sum of the corresponding 
minorants, we get 

Step cL 

To determine the convergence radius of the majorant Lie series (25) ,  
we first calculate from 

and 
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The proof of equations (26) is obtained by mathematical induction. 
of equations (26)  for  k =  1 has already been demonstrated above. 

The validity 

From equations (25) and (26) it now follows that 

Series ( 2 7 ) ,  and also the Lie series (25)  , converge for  

i. e., fo i  

Thus N depends on operator D, while p depends on f (  z) as well as on D, and y 
can be freely selected between 0 and p . At the expansion point P ( y  = 0) the 
series is absolutely convergent for  

. (29 )  * -  P 
( n  + 1) N It1 < T - 

By comparison with the binomial series 

y- ( - ,p,xk= ( 1 +  x) -k 

we obtain an evaluation for  the sum of the Lie series by taking as upper bound 
the summation value for the majorant 

10 



Estimate of Remainder 

To estimate the error of the Lie series 

when it i s  truncated after the m-th term, we get from equation (27)  

since 

M < i .  T 

NOTE: If the ( z  are polynomials, the estimate of the remainder (33) 5 2  
can be further improved. 



C. The Lie Series for the  Solut ion 
of Ordinary Differential Equations 

The following important theorem [ 101 can be derived from the analyses 
in II-B: 

Theorem 2 

zf G is a finite, closed region in z-space where all  f ( z )  and f (  z) are 

holomorphic, then there exists a positive number T so that Lie series (4) in 
11-A i s  absolutely and uniformly convergent in the entire region G for It Is T 
and is a holomorphic function of the n +  i complex variables zi, 3, . . . , z 

k 

t. n’ 

within G and It I 5 T with reference to  the variables z i ,  22, . . . , zn9 t. Thus 
Lie ser ies  (4) can be differentiated term by term as often as desired 

and 

NOTE: In the special case f ( z )  = Z. we get the Lie series 

Zi = e  zi 

1 

(i = I, 2, , n )  (36) 
t D  

In a certain region of the variables zi, z2, . . . z in which all f ( z )  of n k 
operator ( 1) in 11-A are holomorphic, Lie ser ies  (36) represents, according to 
Theorem 2, for ( t  1 I T, holomorphic functions of zl, z2, . . , z 
t = 0 the functions Z .  in equation (36) take the initial values zi 

t. For  n’ 
1 

The following important properties can be demonstrated [ 21 fo r  the Lie 
ser ies  defined by (2 )  in 11-A: 

12 



(a) For  the sums and products of Lie series formed with the same 
operator D: 

where the c. are constant, and 
1 

(b)  Theorem of permutability: 

If F( z) is an arbi t rary holornorphic function near zl, %, . . . n 
and its power series expansion also converges at the point { zi, z2, . . . , zn} , 
then the functional symbol F and the symbol etD f o r  the Lie series 

z 

k = o  

o r  

tD tD 
F ( e  z) = e F(z )  

can alternate. 

Also, according to equation (34) the special Lie series in (36) can be 
differentiated te rm by te rm beyond t in the region It I < T. Thus we have 

k+i 
i 

z * =  - aZi  - ktk-’ D ~ Z  = > 9 e k D  Z 
i 

k = o  
1 %  - k(k-l)!  

k = i  

( i  = 1 , 2 , .  . . , n )  

13 



The functions fi( z)  are holomorphic in the neighborhood of the initial point z i ,  z2 

. . . , z and the independent variable t is not explicit. n 

According to (40a) the functions Z. in (36) satisfy an autonomous system 
1 

of first-order differential equations. From this we immediately obtain the theorem: 

Theorem 3 

If we have an autonomous system of first-order differential equations of 
the form 

zi = f i (Zi ,  z2, 0 . , z n  ) ( i  = 1, 2, . . . n) 

with the initial conditions 

( i  = i ,  2, . . . , n) 

and in whose neighborhood the functions f. ( z )  are holomorphic, then the Lie 
ser ies  

1 

tD Z i = e  z i 

where 
a a a 

D = f i ( Z )  -+ f 2 ( ~ )  - + . . . + f n ( z )  - 
azi az2 azn 

(43) 

represent the desired solutions of this system of differential equations. 

Thus the z. should be considered primarily as variables to which operator 
1 v 

D is applied. After all the differentiations, prescribed by the operator D zi, 

have been performed, the z. can be replaced by the initial values. 

Supplement 

1 

A nonautonomous system of f i rs t -order  differential equations 

ii = f i ( Z 1 ,  z2, . . , zn, t) ( i  = 1, 2, . . , n) ( 44) 

( 45) 

can always, by the substitution 

t = Z  
n+i 

14 



be converted into the autonomous system 

It follows from equation (45) that 

- i E f  
dZn+i  - dt - 

dt dt n +i 

and ( Z  ) = to.  
n+i t= to  

In general, Lie series (43) converge very slowly and are therefore not 
usable in this form in a numericai computiliioii. Thra disa&.w~tage can be elim- 
inated by rearranging (43). To achieve this, operator D is split into 

D = Q + Q  (47) 

where 

and 

Thus near  the initial point I f .  - cp I < 1 cp . I  and the functions belonging to Di 
1 1 

should be regular and expressed by known functions in closed form for all finite 
values of t. 

The subscript Z (o)following the brackets in equation (49) indicates that 
the variables Z1, Z2, . . . , Z are to be replaced by the initial values (42) only 

after all the differentiations prescribed by D have been performed. 
k n 

15 



By splitting ( 47) the desired solutions Z .  ( t )  can be written in the following 
1 

form (see Gr6bner [2] for  details) 

03 t 

1 la m !  'ia(7) m = o  to 
[QDmZ 3 d7.  z. (t) = z. (t) + J 

( i  = 1, 2, . . . , n) (50) 

NOTE: if the term a/at is added to operator D, the splitting of operator 
D becomes considerably more flexible with respect to possible 
choices of the functions <p 1. By splitting D into 

( 51) 
a a n 

i = i  
Dl = 'pi ( Z I ,  z2, . . . , z n '  a z i  at t )  ~ +- 

and 

we can choose any desired functions of t -- polynomials, trigono- 
metric sums, m-terms of the power series expansions, etc. --as 
functions cp k' 

D. Generalized Lie Series 

To extend the scope of Grobner's Lie series, Filatov [ 61 introduced 

m n) 

. . . , z in a region G of the ( n  + I )  -dimensional space R n+l ( t ,  21, z2, . . . 9 z ) 

"generalized Lie series": Under the assumptions that we have cp ( t ,  q p 2 ,  . . . , 
( m  = 0, 1, 2, . . . , n) holomorphic functions of the complex variables t,  z1, 22, 

n n 
containing the origin of the coordinate system. 
f(t ,  z1 z2, . . . , z ) may also be a holomorphic function in the same region G. 

Furthermore, the function 

n 

W e  now introduce operator W 

16 



for  which these relations apply when operator W is repeatedyapplied to function f: 

Wo E f and Wnf = W (Wn-' f )  . ( 54) 

We can now, just as in equation (4) , define the "generalized Lie series" 

k = o  

From q---&: UaLlu l l  -.. (55) we qain  get Grobner's Lie ser ies ,  for the special 
case cp = 0 and f o r  the functions cp ( k  = 1 , 2,  . . . , n) and f which are indepen- 
dent of t. k 

Absolute and uniform convergence in a finite and closed region G of R 

space can also be demonstrated for these "generalized Lie series" [ 61. 

- 
n+l 

I 1 1 .  APPLICATION TO THE RESTRICTED 
PROBLEM OF THREE BODIES 

A. General 

Since the Lie series for  a given initial value problem generally converge 
very slowly, it is usually necessary to split operator D into two operators 
D = Di + 3 and use formula (50) for the calculation. 
necessary that the functions belonging to Di [see equation (49) 3 represent a 
good approximation of the desired solution, and have to be regular for all finite 
values of t, and can be expressed by known functions in closed form. Until now, 
a low-order polynomial, second o r  third-order, in ( t  - to) with the coefficients 
D z. has  been used at each initial point. 

But in doing this it is 

v 
1 

U The operators D zi for  u = 0, I, 2, . . . had to be computed in this way, 

but generally this is possible only up to u = 2, 3, o r  at most 4, because the oper- 
a tor  t e r m s  soon become too long. A good initial approximation was rarely 

17 



achieved and the highest order  of the error term for  the Lie series method was 
very low [ 41. 

Since the Lie series for  a problem in differential equations, for  reasons 
of the uniqueness of the solution, is simply the Taylor series fo r  the solution 
function, the power series method can obviously be used to get a good initial 
approximation for  the method of Lie series [ 21 . Thus it becomes possible to 
expand the method of Lie series into a numerical method of any desired order  
of accuracy. By adding perturbation integrals to formula (50) ,  the order  of 
accuracy of the method of Lie series can be raised by a full h-power over the 
power series method by every further perturbation integral. The perturbation 
integrals are therefore analogous to the k-values of the Runge-Kutta-Fehlberg 
method. 

B. The Restricted Problem of Three Bodies 

For  the numerical solution of the restricted problem of three bodies in a 
rotating coordinate system the problem of initial value [ 7, 8, 41 

with the initial conditions 

x (0 )  = xo, X ( 0 )  = xo 

Y ( 0 )  = Yo, Y ( 0 )  = Yo 

will be integrated step by step.  Additionally, p = 1/82.45 and p*  = 1 - 1-1. 

With the abbreviations 

(56a) 

18 



I 

equations ( 56) become 

k = 8, 

y = 8 2  

Operator D [ see equations (43) or (51) 3 for equations (58) is 

a a a + &- + 8 9 -  + Q 4 -  
a + .a - D = -  a 

at " l  ax ay 38 1 2; 2 (59) 

W e  split operator D in equation (59) into 

a 
as ,  + ~ 4 %  at 

+ -  a a a a 
ax aY 

+ 8 2  -+ q 3 -  Di= ai- 

and 

where D = D1 + Q, and q 3  and q4 are arbitrary functions that will later be 
chosen in a more convenient form. Using equation (50) ,  the solutions of equations 
(58) generally take the form 

where g ( t ,  z ) = etDiz must be a known approximate solution of equations (58) .  

We now choose q and q as follows: 

o m [ D m + 2 x  ] 
m! q 3 = [ d X l ~  +... + 

q 4 = [ d y l o  +. . .  + m! 

19 



. 

V V where [ D x] and [ D y] represent the v-th total derivatives of x and y with 
respect to t ,  taken at the point t =  to, x =  xo , k = xo, y = yo, and y = yo. 

With cp 3 and cp 4 chosen according to (62) ,  the approximate solutions g( t, z) 
of (62)  are 

t Di 

t Di 

x = [ e  xlO a 

Ya = [ e  Y l o  

fa = [ e t D i 8 2 ~ o  

k a = [,tDl$,lo 

where [ ] means that the expression in brackets, after having performed all 
the operations prescribed by D1, is computed at the point t = to, x = xo, k = ko, 
y = yo, and y = yo. If, for example, we calculate x from equations (63) we 
get, using a 

Dlox = x 

m- I 
[ Dm' 2x] 0 

(t-to) ... + m  m! 

m-2 
= [D4x]0+ u[D5x]o + . . .+ m (m-1) (t-to ) [ Dm+ 2x] 

m! 3! 

............**......*. ..............*...*....*.. 
m m +2  

m +j 

Di X =  [D X]O 

Di x =  O f o r j = l ,  2, 3, ... 

20 



V under consideration that in x = [ etDix ] 0 , Di x has to be taken at the point t = to, 

the following equation for the approximate solution x a' 

a 

v = o  v =  0 

In the same way, we can show that 

V 
x = )-? [D1Vsl] = y ( t - t n ) Y  [ Dv8i], 

V! a 
v = o  v =  0 

v = o  v =  0 

NOTE: The solution of the system of differential equations 

( i  = 1, 2, . . . , n) ( 0) zi (to) = 2 i 

can, using the formula of Lie series,  be written in the following 
closed form [see equation (43)] : 

Operator D is here  defined by 

a 
az 

n 

k=l 
D =  a k ( z l ,  22, . . , Zn) - . 

k 
(67) 
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Given equation ( 65) , i. e. , given 

dZi 

dt = J i  , - 

it follows from equation (67) that 

dZi 

dt 
- - Dz = a i  i . 

And from equation (68) we get 

d z  =D(Dzi)  = m i  i 

so that Lie series (66) ,  as is also shown by the uniqueness of the solution, is 
identical with the Taylor series for  zi( t) . 

Therefore it is possible to get the desired accuracy for the initial approx- 
imations (64) by any choice of m using the method of power series [ 71 without 

explicitly calculating the operators D z . The explicit calculation of the oper- 
i 

ators D z. for v = 4, 5, . leads to extremely long expressions being of no 

value to the practical solution [ 41. It was mainly for  this reason that the method 
of Lie series could not compete with other methods for  the solution of ordinary 
differential equations. By use of the method of power series, however, these 
difficulties could be eliminated. Furthermore it is now possible to expand the 
method of Lie series by making it a numerical method with any high truncation 
e r r o r  possible. This was the decisive step in the new method of Lie series first 
developed by Fehlberg and Filippi [ i ]  . 

V 

V 
1 

Parallel to the k-values in the Runge-Kutta-Fehlberg method [ 1, 8,9,10], 
we add perturbation integrals [ see  equation (61) 3 to the initial approximations to 
raise the order  of the truncation e r ro r .  To solve these perturbation integrals, 

the operators Q D  z. for  k = 0, i , 2 , .  . . must first be computed. Each pertur- 

bation integral added to the initial approximation (64) enlarges the order  of the 
truncation e r r o r  O(h ) by one full power. 

k 
1 

m - 
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The following equations are the results of our calculations for  k = I, 2,3,  
and 4. 

(a) k =  0: QDox= 0 

QDoy = 0 

(b) k =  I: Q D x  ‘83  - ~ 3  

QDY ’ 9 4  - ‘p4 

with 

* 2 5 2  

2 x +  p ) 2  - 2y 
[ ( X - P )  + Y  1 - c L  [ (x  + PY + Y 1512 

(111) = - 3  - p ’  ( 
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We shall now combine the solution formulas for  equations ( 5 8 ) ,  consider- 
ing also equation (61)  with the perturbation integrals fo r  k = 0, I ,  2 ,  3, and 4: 

Solution Formulas 

t t 

t t 



Step-by-step Arithmetical Performance* 

By use of the solution formulas in the second pa r t  of this section, we can 
immediately perform the step-by-step computation of x (t)  , 2( t) y(  t) and y (  t) 
if we compute the perturbation integrals that depend on m.  The m is arbitrarily 
chosen for  computation of the approximate solutions x ( t )  x (t) , y (t) , and 

y (t) via a quadrature formula with a n  e r ro r  of the order  O (  h 

O(hm + 3  ) ,  o r  O(h 

a a a 
) ,  O(hm+2 ) ,  

m +l 
a 

m +  4 
) . But the effort is by far too great [4] .  

We shall now suggest a more satisfactory method for  calculating the 
perturbation integrals. 
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Calculation of the First Three Perturbation Integrals 

We start as follows: 

If we successively introduce t= to + 2A t, t =to + A t, and t = to - A t into ( 70) , we 
get 

t=to + 2At 
( 9 3  - ‘P3)a 

(72)  A +2AtAm+2 +4 (A t ) 2Am+3= =a! 

(2A t )  m+i m+i 

t = t o  - A t  
(93 - ‘P3Ia 

= y  . (74) - - 
(-1) m+i (At)  m+i m+3 

A - A t A  +(At)2A 
m+l m+2 

We get three corresponding relations if we successively introduce t = to + 2A t, 
t = to + At,  and t = to - A t into equation (71) . 

If we add equations (73) and (74),  we get 

-B+r 
2 

A + (At)’ Am+3 - m +l 

If we subtract equation (74) from equation (73) ,  we get 

2At *m+ 2 =P-  Y 

o r  
-S-r 

*m+2- 2At 

Using equation (76a) we get from equation (72) 
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+ 4(At) 2Am +3 = a - p + y  0 

m +l 
A 

If we subtract equation ( 7 5  f rom (77) ,  we get 

o r  \ 

It follows from equation (75) , using equation (78) ,  that 

a - -  - + p + L  * 

m + l  3 3 A 

m+3 ’ We then get these expressions for  A A and A 
m+i’ m+2’ 

(77) 

m+3’ Analogous to this we get three expressions for Bm+l, Bm+2, and B 

etc., in equations (80) , (81), and (82) ,  
m+l’ We simply say B 

and we change every ($3 - ( ~ 3 ) .  to ( 9 4  - ( ~ 4 ) ~ .  

instead of A m+l 

If we now introduce the expressions ( 80), ( 81), ( 82), and the corre- 
to the first three perturbation integrals and Bm+3 m +i’ Bm+2’ sponding terms B 
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we get, by means of a term-by-term integration, the following definitive solution 
formulas: 

( A t ) m + 4  I ( A t ) m + 5  I I m +  2 I A m +  3 I 
( A t )  m +  A 

+ m + l  
A 

x ( t )  = x ( t ) +  ' ( m +  2) ( m +  3) ( m  +3) ( m  +4)  +i ( m +  4) ( m +  5) ! a 

(A t ) m+ m + 2  2Bm+i (A t ) m+4 2B 
.L I 
T 

(m+2)(m+3) ( m + 4 )  ( m + 3 )  ( m + 4 )  ( m + 5 )  

] ( A t ) m  + 5  m +  i a [(Wm + I  + (11) B 
I 

( m + 2 )  ( m + 3 )  ( m + 4 ) ( m + 5 )  

(At) m +  m +  2 ( A t ) m + 3  + A m +  3 
(At)"' A 

+ m +  1 
A 

X(t) = ka( t)  + m +  2 m +  3 m +  4 

2B (At )m+3  2B m+ 2 ( A t ) m + 4  
L 

m+i I 

' ( m + 2 ) ( m + 3 )  ' ( m + 3 ) ( m + 4 )  

(At)  m +  
( 85) 

2Am + 2  2A ( A t ) m + 4  

( m + 2 ) ( m + 3 ) ( m + 4 )  ( m + 3 ) ( m +  4 ) ( m +  5) 
- m+l - 

3 ( A t ) m + 5  m + l  a [(II)Am + i  +(I I I )B 
+ 

(At)  

YW= y a w +  m + 2  m + 3  m + 4  
m +  3 

B ( A t j m + 2  B ( A t ) m + 3  B 
+ m +  2 + m + i  

(At) m + 4  
m + 2  

(At) m + 3  2A m + i  
2A 
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( m +  2 ) ( m  + 3 ) ( m +  4) 

where (I) (11) (III) are abbreviations used in  the expression for k = 3 in 

111-By d (page 23).  Index a means that in ( I), (11) , and ( III) x, 2, y, y always 
has to be replaced by x i y , f [see (64) 3 .  The expressions A 

a r e  found in expressions ( 80) ( 81) (82) and in three corresponding B 

expressions. The sign !indicates that this term is used for automatic 

step-size control. All other terms with (At)  m+  
tions ( 83) . . . (86) a r e  computed step-by-step. 

a’ a 

a’ a’ a a m + i ’ *  ’ 

r----- 1 

L - - - ---l 
m +3 

a r e  to be neglected when solu- 

Computation of the F i rs t  Four Perturbation Integrals in iii-B. 

Using the 

( 9 3  - 403)a 

( 9 4 -  404), 

and computing as  
formulas 

€or mula t ion 

m + i  m + 4  
A m +  4 

+. . . + ( t  - to) Am +I = ( t  - to) 

m + l  m +4 
Bm +4 + . . . + (  t - to )  Bm+ 1 = ( t  - to) 

in the third section of In-By we  get as the definitive solution 

m +  4 
(At)  

m +  3 
x ( t ) =  x ( t )  + A LAt) + A  

a m + l  ( m + 2 ) ( m + 3 )  m + 2  ( m  + 3 ) ( m  +4) 

m + 6  I 
I 
I 

A t  
m + 5  I 

At $ 1  
+ Am+3 ( m  14 : (m+ 5) I * m + 4  ( m +  6)(i+ 6) 

( A t ) m +  
m 1-4 

2B (At) + 2B 
m + l  ( m +  2 ) ( m  + 3 ) ( m  +4)  m + 2  ( m  +3)  ( m  + 4) ( m  + 5) 
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(At)*+ 
+ 2  - 

( m  + 2 ) ( m +  3 ) ( m +  4 ) ( m +  5 ) ( m  + 6 )  

+ B m + i [  i a (v)+ i a (VI)+(I )  + (III)+ 4 l a  I 

m + 6  
( A t ) m + 5  (At) I 

+ B m + 3  ( m + 4 ) ( m + 5 ) + 1  B m + 4  ( m + 5 ) ( m + 6 )  I 

( A t ) m f  
m +  4 

- 2A (At) - 2A m+i ( m + 2 ) ( m + 3 ) ( m + 4 )  m + 2  ( m + 3 ) ( m + 4 ) ( m + 5 )  

m +  6 
(At) 

m + 3  (m+ 4 ) ( m +  5 ) ( m + 6 )  
-2A 

+ (111) Bm + I  a I 
(At)m +' + 

( m +  3) ( m +  4) ( m +  5) ( m  +6)  L(ll)Am+ 1 

m + 6  

1. 
(At)  + 2  / B  [k (VI)+fa(VII) 

( m  +2)  ( m +  3) ( m +  4) ( m  +5)  ( m +  6) ~1 m + i  a 

la) + A  x (V)  + y  (VI) - (I) - (111) - 4 m+i 1 a a 

m + 4  
(At) 

m +  3 

m + 3  m + 4  + A  (At) 
m + 2  

m + 2  m + 3  
+ A  (At) x ( t ) =  x ( t ) + A  m + 2  a m + i  
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(At) m +  + 2B (At) m +  
+ A m + 4  m +  5 m + i  ( m +  2) ( m +  3) 

m + 4  

m +  i ] a  + ( 11) B At  + (m+2):m)+3)(m+ 4) [ (1)Am+i  

m +  5 
(At) + 2  ( m +  2) ( m +  3) ( m +  4) ( m +  

x ( V ) +  y (VI) + ( I )  + (111) + 4 
m+ i [  a a 

+ B  

(At) m + 4  
( A t ) m + 2  + B  (At) m +  + B  

m + 2  m + 2  m + 3  m + 3  m + 4  i ( t )  = i a ( t )  + Bm 

( A t ) m + 3  m + 5  
(At) 

+ Bm+4 m + 5  - 2 A m + 1  ( m + 2 ) ( m + 3 )  

m +  4 m +  5 
(At )  - 2A (At)  

- 2A 
m + 2  ( m + 3 ) ( m + 4 )  m+3 ( m +  4 ) ( m +  5) 

m +  i ]a 
+ ( 111) B + ( A t ) m f  

( m +  2) ( m +  3) ( m  +4) [ (II)*m+ i 
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\ x ( V ) +  y (VI) - ( I )  - (111) - 4 
la J + Am+i 1, a a 

with 

( -  + 8P - 8 y +  6) 1 - -  - 
Am + 2  12At 

3 ( a  - 2 p + 2 y -  6 )  
1 - - 

m + 4  i2(At) A 

where t =to+ 2A t 
( 9 3  

C Y =  
( 2 A t ) m  +’ 

t =to + A t  
( 9 3  -cp3),  

P =  
( A  t ) m  

t = t (  
(793 - c p 3 I a  

v =  

- At 

1 

( - A t ) m  + ’  

m +  1 
( -2At )  

and B m + 4’ B m + i ’  m + 2 ’  B m + 3 ’  and also corresponding expressions for B 

where (a4 - cp 4) a appears in the expressions for CY , p , y, and 6 instead of ( 9 3 -  q 3 ) 6  

The expressions (I)  , (11) , . . . , (VII) appear in 111-B, d and e (page 23) for 
k = 3 and k = 4. All other expressions correspond with those in the third section 
of 111-B. 

Some Numerical Results 

The following table ( see also Fehlberg and Filippi [ 11 ) illustrates the 
efficiency of the new Lie-series method using three perturbation integrals and 
automatic step-size control as described in the third par t  of 111-B. The restricted 
problem of three bodies [see (56) 3 was solved fo r  the initial conditions 

xo = 1.20000 00000 00000 

ko = 0 

y o  = 0 

yo = -1.04935 75098 30320 
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. 
For  comparison, the problem was also computed using other modern methods of 
numerical integration: the method of power series and two versions of the Runge- 
Kutta-Fehlberg method [ 9, l o ] .  All four methods were applied with a truncation 
e r r o r  of the order O (  hi3) . All computations were performed on an  IBM 7094, 
Model I1 computer in double precision (16 digits). 

NUMBER OF INTEGRATION STEPS AND COMPUTER RUNNING 
TIME AFTER 12 REVOLUTIONS (ABOUT ONE YEAR ACTUAL TIME) 

Method 

PSE :: ) 

Lie * ) 
RKFe 1964:: ) 

RKFe 1965 :: ) 

Number of Steps 

5896 

5191 

4740 

3353 

Running Time [ min] 

2 . 4 9  

2 . 0 5  

1. 83 

1 . 3 5  

:: ) 

PSE = Power Series Expansion 
Lie = New Lie-Series Method with Three Perturbation Integrals 
RKFe 1964 = Runge-Kutta-Fehlberg Method 1964 
RKFe 1965 = Runge-Kutta-Fehlberg Method 1965 

George C. Marshall Space Flight Center 
National Aeronautics and Space Administration 

Huntsville, Alabama, August 29, 1966 
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